

UNCLASSIFIED

Page 1 of 4

UNCLASSIFIED: Distribution Statement A. Approved for public release.

Letting the Data Lead the Code

Darryl Bryk

U.S. Army RDECOM-TARDEC

Warren, MI 48397

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors

expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be

used for advertising or product endorsement purposes.

Introduction

Sometimes the data format used can radically simplify the code. A simple change to the way data

is stored in a file can make a big difference in the code required to read it. This was made apparent

recently with some Visual Basic code which would locate a list of numbers based on certain search

criteria. The code was about one thousand lines and needed to be converted to C# for a new

application. It was time to rethink how this could be simplified.

The original data format was just a series of numbers stored in an Excel spreadsheet accessed by

variable names. Through a long series of if-then-else and case statements the code determined

which data to read from the file. The data-search hierarchy was in the source code. It was found

that by changing the data format in a hierarchically structured way the code could be drastically

simplified. After changing the data format the search function was simplified to about forty lines

of code. Although this article will describe a specific data type search algorithm, it may inspire the

developer to think more about the data-code design.

Background

The original code operated by searching for specific sensor information from which it could

determine which data should be read from the spreadsheet. There are three different sets of data

(e.g. Set1, Set2, Set3) from which to search, and each set has data for three types of machines (M1,

M2, M3). Each machine has from fifty to sixty sensors which could be in seven different positions

(Pos1, … Pos7), some of which could have upper or lower positions (UP, LO), and each sensor

could be of three different types (F, M, A), and have two to three axes (x, y, z). Also, some data

pertains to both +/- axes and some to just the + axis or – axis. As an example, suppose a search

request was for the +z-axis, type F sensor, position Pos1UP, for the M1 machine, and using the

Set1 criteria. The original code would call the Set1 handling function and go through the

if-then-else statements to locate Pos1UP, the F +z-axis, and then the M1 machine, and then the

criteria number could be read. Once the search was satisfied the data lookup was very simple. The

complicated decision-search algorithm was all in the code. An example section of the VB code is

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
31 AUG 2015 2. REPORT TYPE

3. DATES COVERED
 00-00-2015 to 00-00-2015

4. TITLE AND SUBTITLE
Letting the Data Lead the Code

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
DARRYL BRYK

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC,6501 E. 11 Mile
Road,Warren,MI,48397-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
See Report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

4

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

UNCLASSIFIED

Page 2 of 4

shown below where bInStr () returns a Boolean indicating whether the passed string is found in the

string, IV was a list that would accumulate the pertinent data values, and _IA_M1_Pos1 is an example

variable name in the Excel data file where the data resided. The Sht.[_IA_M1_Pos1].Item(1, 1) and

Sht.[_IA_M1_Pos1].Item(1, 2) retrieve the values at _IA_M1_Pos1 and one cell to the right,

respectively.

With Sht
If (bInStr(str, "Pos1")) Then

 Select Case (sMachine)
 Case "M1"
 With .[_IA_M1_Pos1]
 Call IV.Add("Set1 " + sMachine, .Item(1, 1) & " " & .Item(1, 2), "H")
 End With
 Case "M2"
 With .[_IA_M1_Pos1]
 Call IV.Add("Set1 " + sMachine, .Item(1, 1) & " " & .Item(1, 2), "H")
 End With
 Case "M3"
 With .[_IA_M1_Pos1]
 Call IV.Add("Set1 " + sMachine, .Item(1, 1) & " " & .Item(1, 2), "H")
 End With
 End Select
 End If
 ElseIf (bInStr(str, "Pos2") And bInStr(str, "UP")) Then
 :
 :

Using the Code

By offsetting some of the data complexity to the data file instead of the code, and rewriting the data

file in a hierarchically ordered format like this:

<set> <machine> <position> <sensor-axis> (data)

where the number in parenthesis is the sought after data value(s), the code was drastically

simplified to a while-loop with a short series of nested “if-then” statements. The data file is just a

text file and each line keeps the same formatting as above. Each “set” type is kept together in the

file as contiguous lines so if the search turns up empty by the time a different set is read, the search

can stop. When the set is matched, the search loop proceeds deeper.

An example of the C# code is shown below.

 public static List<int> SFData(string sSet, string sMachine, string sPosition,

 string sUPLO, string sAxis) {
 if (SDFileName == "") return null; // Data file name (class variable)

 List<int> ilist = new List<int>();

 string sopt = sPosition + sUPLO; // To catch UP/LO

 bool bFound = false; // Flag to break loop

 try {
 using (StreamReader reader = new StreamReader(SDFileName)) {
 while (!reader.EndOfStream) {

 string str = reader.ReadLine();

UNCLASSIFIED

Page 3 of 4

 if (str != "" && str[0] != '/' && str[0] != '<') { // Skip directives
 string[] s = str.Split(new char[] { ' ', '(', ',', ')' });

 if (s[0] == sSet) {
 if (s[1] == sMachine) {

 if (s[2] == sPosition || s[2] == sopt) {
 bFound = true;

 if (s[3].Contains(sAxis)) {
 iv.Add(new List <int>());

 int inum;

 for (int i = 4; i < s.Length; i++) { // Get numbers
 if (s[i] == "//") break; // Comment skip

 if (int.TryParse(s[i], out inum))

 ilist.Add(inum);

 }
 }

 }
 }

 }
 else if (bFound) break; // Stop reading

 }

 }
 }

 }
 catch (Exception err) {

 MessageBox.Show("Error - " + err.Message, "SFData()",
 MessageBoxButtons.OK, MessageBoxIcon.Error);

 return null;

 }

 if (ilist.Count == 0)

 return null;
 else

 return ilist;

 }

SFData reads the text data file SDFileName line by line, first looking for a match for sSet, then

sMachine, then sPosition (or sopt which includes position information “UP” or “LO”), and finally

sAxis. The read-in string is parsed with Split() for white space, commas, and parentheses, and

comments and directives in the file are flagged by being preceded with “//” and “<”, respectively,

so these lines can be skipped. A for loop reads in the data until the end of the string, since data can

be from one to four numbers. The function returns a list of the appropriate data numbers, or null, if

the search was unsuccessful.

Points of Interest

The code was drastically simplified, is much easier to maintain, and is generic enough to work for

all the different types of sets, sensors, etc. The data file maintenance is also simplified and can be

updated without making changes to the code as long as the basic order and format stay the same.

UNCLASSIFIED

Page 4 of 4

A side advantage of re-configuring the data file allowed for directives (enclosed in “<>”) which

are used by the application to load menu options for selecting the data set. The application can then

add menu options at run-time based on the data file that is issued to the customer, and data sets can

be tailored to a particular customer. In addition, the data file itself is fairly straight forward to

update. In fact, the customer could edit the data file to add their own data criteria and menus.

Conclusion

The original code of decision making if-then-else blocks may have run faster, since the new code

has to read through lines of strings until the criteria is found or reaches the end of file, but since the

data file is less than 400 lines, and the search stops when the search is satisfied, the speed

difference is probably very minimal. The move to the new code most dramatically simplified the

code maintenance however, and allows for much simpler changes and additions to the data file,

which can now even be done without the need of updating code and re-compiling the application.

Although this article described a specific type of data search, it may inspire the developer to

re-look at ways to simplify their own data-code interface.

